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Abstract

The in¯uence of rarefaction on heat transfer in circular tubes is studied. A spatial rescaling factor rs, which is a

measure of rarefaction through its dependence on the Knudsen number, is introduced to identify similarities with
the classical Graetz problem. It is found that heat transfer depends both on the degree of rarefaction and on the
surface accommodation coe�cients. The temperature jump at the wall, ignored in recent investigations, is found to

be of essential importance in the heat transfer analysis. A novel uniform asymptotic approximation to high-order
eigenfunctions is derived that allows an e�cient and accurate determination of the region close to the
entrance. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Flows for which rarefaction e�ects start to become

non-negligible Ð the molecular structure of the ¯uid
can no longer be ignored Ð are in the slip-¯ow regime
[1]. Such ¯ows are characterized by a ®nite, but small,

Knudsen number Kn de®ned as the ratio of the mol-
ecular mean free path l to the characteristic length of
the system, 2R for laminar pipe ¯ows. Continuum
equations apply for Kn40, while kinetic theory is

valid for Kn41 (free molecular ¯ow). Slip-¯ow
e�ects are important in exchange processes in rare®ed
gases (low-pressure systems) [2] and in microscale heat

transfer (ordinary pressures) [3].
An important problem in rare®ed gas dynamics is

the determination of an adequate set of equations that
describes the behaviour at intermediate values of the

Knudsen number. In the slip-¯ow regime, departure
from continuum behaviour is slight, corresponding to
Knudsen numbers in the range of 10ÿ3±10ÿ1 [1]. Such

a deviation from continuum behaviour arises ®rst from
the walls, where in a non-negligible Knudsen layer [4]
molecular collisions with the walls dominate over inter-

molecular collisions. Far from this layer intermolecular
collisions are dominant. Hence, it is intuitive to model
¯ow and heat transfer phenomena in slip ¯ows by
maintaining the usual continuum equations for the

bulk of the ¯uid (Navier±Stokes, Fourier heat conduc-
tion law) relegating rarefaction e�ects to the boundary
conditions for the temperature and velocity ®elds

(thereby incorporating wall e�ects) [1,5].
Convective heat transfer under slip-¯ow conditions

in circular tubes was recently analyzed by Barron and

co-workers [6,7] by considering it as an extended
Graetz problem. As is well known the coÃrps of the
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classical Graetz problem is steady-state heat transfer in

laminar duct ¯ow under the assumptions of constant-

properties ¯uid, fully developed velocity pro®le, and

negligible energy dissipation. Whereas an analytical

solution in terms of an in®nite series for the classical

Graetz problem exists, the numerical evaluation of

high-order eigenvalues and eigenfunctions (required for

the determination of the region close to the entrance)

is computationally intensive. In fact, the results pre-

sented in Refs. [6,7] demonstrate the di�culty of the

numerical evaluation of Kn-dependent eigenvalues.

Mikhailov and Cotta [8] correctly pointed out that the

numerical procedure used in these references ignored

recent techniques that would have rendered the calcu-

lation free of numerical instabilities. More importantly,

in Refs. [6,7], the temperature jump condition,

although explicitly mentioned in the speci®cation of

the boundary conditions, was ignored in the calcu-

lation of the eigenvalues. Hence, the heat transfer

results of Refs. [6,7] neglect in reality the e�ect of the

temperature jump at the wall, a boundary condition

that, as we will show, is crucial in determining heat

transfer.

The objective of the present work is to investigate

slip-¯ow heat transfer when both the velocity slip and

the temperature jump condition are taken into

account. We will show that heat transfer depends on

the degree of rarefaction and on gas-surface interaction

properties, as determined by the corresponding accom-

modation coe�cients. In doing so we reconsider the

slip-¯ow heat transfer problem by analogy to the clas-

sical Graetz problem. We show that a judicious scaling

of the spatial variables maps it to the classical Graetz

problem with mixed boundary condition. The scaling

factor incorporates both rarefaction e�ects and gas-

surface interaction properties: di�erent degrees of rare-

faction or gas-surface interaction parameters lead to

shifts in the radial position where the wall boundary

condition is applied. We ®nd that heat transfer

decreases when the temperature jump condition is in-

corporated, thus, neglecting it leads to signi®cant over-

prediction of heat transfer. Moreover, these parametric

e�ects are enhanced in the entrance region requiring

asymptotic evaluations of eigenvalues and eigenfunc-

tions. Finally, our results are extensively compared to

those of Ref. [7].

Nomenclature

Cn coe�cient de®ned in Eq. (20)
c1, c2 integration constants given by Eqs. (35) and

(36), respectively

cp speci®c heat
F eigenfunctions, cf. Eq. (16)

1F1 con¯uent hypergeometric function

Fw weighted asymptotic expansion, cf. Eq. (39)
G function de®ned in Eq. (32)
H function de®ned in Eq. (30)

h heat transfer coe�cient
J Bessel function
k thermal conductivity
Kn Knudsen number �l=�2R��
Nu Nusselt number �2Rh=k�
Pr Prandtl number �mcp=k�
q heat ¯ux to the wall

r̂ radial coordinate
r dimensionless radial coordinate �rs r̂=R�
R gas constant for the gas in question

R pipe radius
Rn coe�cient de®ned in Eq. (19)
Re Reynolds number �2RUaveR=m)
T temperature
Tw wall temperature
T0 inlet temperature

U ¯uid velocity
Uave ¯uid ¯ux-average velocity �Uave=Umax �

�2ÿ r2s �=2�
Umax ¯uid maximum velocity (at the tube centre-

line, r̂ � 0)
u dimensionless ¯uid velocity �U=Umax�
ẑ axial coordinate
z dimensionless axial coordinate �ẑr2s �2ÿ r2s �=

�RRePr��
z� dimensionless axial coordinate �ẑ=�RRePr��

Greek symbols
aM tangential momentum accommodation coef-

®cient
aT thermal accommodation coe�cient
bv de®ned in Eq. (3)

bT de®ned in Eq. (4)
b bT=bv

g ratio of speci®c heats

y dimensionless temperature ��TÿTw�=�T0ÿTw�]
ym dimensionless bulk-average temperature
l mean free path, eigenvalue

m ¯uid viscosity
rs slip radius, cf. Eq. (6)
R ¯uid density
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Our analysis of heat transfer in the entrance region,
where high-order eigenvalues are required, lead us to

the development of an improved asymptotic analysis
of the eigenfunctions. Speci®cally, the well known
asymptotic approximation of Sellars et al. [9] is

replaced by a new uniform approximation that incor-
porates naturally this moving (as rarefaction varies)
boundary condition. This novel asymptotic analysis is

based on the use of the Langer transformation [10] at
two turning points and the subsequent matching of
two asymptotic series by appropriately weighting them,

thereby obtaining a weighted asymptotic approxi-
mation to the high-order eigenfunctions. In the limit of
continuum ¯ow, this new approximation improves the
accuracy of the original asymptotic approximation

reported in Ref. [9] (see also Ref. [11]).

2. The Graetz problem under slip-¯ow conditions

When the Knudsen number is small but non-negli-
gible the continuum momentum and energy equations
are assumed to be valid and slip-¯ow e�ects are incor-
porated by imposing appropriate boundary conditions

[1,5]. In particular, the boundary conditions become

U�R� � ÿbvl
dU

dr̂
jr̂�R � 3

�
RT

8p

�1=2 l
T

@T

@ ẑ
jr̂�R, �1�

T�R� ÿ Tw � ÿbTl
@T

@ r
jr̂�R �

1

4R
U 2�R�: �2�

The derivation of the velocity boundary condition is
reproduced in, for example, Refs. [1,4], whereas exten-
sive discussions of the temperature condition may be
found in Refs. [2,12]. The ®rst terms on the right-hand

side of Eqs. (1) and (2) specify the velocity slip and
temperature jump due to a velocity and temperature
gradient, respectively. The second term in Eq. (1)

accounts for thermal creep, i.e., ¯uid ¯ow along the
wall due to a temperature gradient across the ¯ow,
while the second term in Eq. (2) accounts for viscous

heat dissipation. The relative importance of these sec-
ond terms may be shown to be negligible under the
usual assumption of low Eckert number (negligible
energy dissipation). Indeed, one may readily show via

dimensional analysis that the second term in Eq. (1)
becomes second order in the Knudsen number, while
the second term in Eq. (2) becomes proportional to the

Eckert number. Hence, hereafter, only the ®rst terms
of the boundary conditions will be retained.
The coe�cients bv and bT depend on properties of

the interaction of the gas with the surface: they are
functions of surface accommodation coe�cients. Ex-
pressions for them may be derived from kinetic-theory

arguments (see, for example, Refs. [1,4]). In particular,
they are

bv �
2ÿ aM

aM

, �3�

bT �
2ÿ aT

aT

2g
g� 1

1

Pr
: �4�

A tangential momentum accommodation coe�cient
aM � 0 corresponds to specular re¯ection, whereas

aM � 1 corresponds to perfect accommodation (di�use
scattering); in typical engineering applications aM is
close to unity. The thermal accommodation coe�cient

aT is close to 0.9 for typical engineering surfaces, but it
may become of the order of 10ÿ1 for especially clean
surfaces [1,5]. In general, tabulated data imply that the

accommodation coe�cients may be signi®cantly di�er-
ent from unity for light atoms (helium) whereas they
are closer to unity for heavy atoms (krypton). More-
over, di�use scattering becomes dominant for contami-

nated surfaces with respect to clean surfaces (i.e.,
aM41� [2].
The velocity-slip condition modi®es the Hagen±Poi-

seuille velocity pro®le; the resulting pro®le, expressed
in terms of the dimensionless variable r̂=R, becomes

u

�
r̂

R

�
� U

Umax

� 1ÿ ÿr̂=R�2�4bvKn

1� 4bvKn
: �5�

Eq. (5) may be further simpli®ed by introducing a new

dimensionless radius r � rsr̂=R where the scaling factor
rs, hereafter referred to as slip radius, is given by

r2s �
1

1� 4bvKn
: �6�

With this spatial scaling, the dimensionless velocity
pro®le takes the standard parabolic form,
u�r� � 1ÿ r2: An interpretation of the slip radius

stems from the observation that rs is the necessary
scaling (to ®rst order in the Knudsen number) of
the physical boundary at R to a new ®ctitious extrapo-

lated boundary at R=rs where the ¯uid velocity
does not slip, U�R=rs� � 0: In particular, since����������������������
1� 4bvKn

p
11� 2bvKn for bvKn� 1, the ratio R=rs

becomes R=rs1R� bvl: Then, the condition that the

velocity vanish at the extrapolated boundary corre-
sponds to the naive resummation of the velocity
boundary condition (1) (keeping, as argued before,

only the velocity-slip term). Note that the extrapolated
boundary is such that R=rs > R since rs < 1: Clearly,
the slip radius becomes unity in continuum ¯ows. Hen-

ceforth, all quantities will be expressed in terms of rs,
for this incorporates both rarefaction e�ects and gas±
surface interaction properties.
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We now consider heat transfer in forced laminar
¯ow through a circular tube with constant temperature

at the wall with the usual assumptions of the classical
Graetz problem: hydrodynamically fully developed
¯ow, constant-properties ¯uid, high Peclet number,

and negligible energy dissipation. The dimensionless
energy equation reads

�1ÿ r2 �@y
@z
� 1

r

@

@ r

�
r
@y
@ r

�
, �7�

with boundary conditions

y�r, 0� � 1, �8�

@y
@ r
jr�0 � 0, �9�

y�rs, z� �
b
2

1ÿ r2s
rs

@y
@ r
jr�rs
� 0, �10�

where the dimensionless variables are de®ned as fol-
lows

r � r̂

R
rs, z � ẑ

R

r2s
ÿ
2ÿ r2s

�
RePr

, y � Tÿ Tw

T0 ÿ Tw

: �11�

In the limit of continuum ¯ow �Kn40, rs41� the

usual dimensionless variables are recovered [11].
Thus, the slip-¯ow Graetz problem has been reduced

to a classical Graetz problem with a mixed boundary
condition (10). Such cases have been investigated

extensively in the literature (see, for example, Ref. [13]
and references therein). Therefore, previous results
may be easily transposed to the slip-¯ow problem. A

review of the solution of Eq. (7) is instructive because
the mixed boundary condition introduces the slip
radius explicitly.

As is well known, the in®nite series solution of Eq.
(7) is

y�r, z� �
X1
n�1

anexp
�
ÿ l2nz

�
F�r; ln �, �12�

where the eigenfunctions F�r; ln� satisfy

d2F

dr2
� 1

r

dF

dr
� l2�1ÿ r2 �F � 0, �13�

subject to the boundary conditions

dF

dr
jr�0 � 0, �14�

F�rs � �
b
2

1ÿ r2s
rs

dF

dr
jr�rs
� 0: �15�

The eigenfunctions F are determined up to a con-

stant due to the linearity of Eq. (13) and the homo-
geneous boundary conditions. We chose the same
normalization F�0� � 1 as used for the classical Graetz

problem.
The eigenfunctions may be expressed in terms of the

con¯uent hypergeometric function [14] (or, alterna-

tively, in terms of Whittaker functions [15]) as follows

F�r; l� � exp

�
ÿ lr2

2

�
1F1

�
2ÿ l
4

; 1; lr2
�
: �16�

Moreover, the eigenfunctions satisfy orthogonality
conditions, since the corresponding di�erential
equation and boundary conditions constitute a Sturm±

Liouville problem. The orthogonality condition is
given below, along with another useful integral re-
lationship which will be required later�rs

0

r�1ÿ r2 �F�r; ln �F�r; lm � dr

�
�
0 for n 6� m
CnRn=�4ln � for n � m

,

�17�

�rs

0

r�1ÿ r2 �F�r; ln � dr � ÿrs

l2n
Rn, �18�

where the coe�cients Rn and Cn are de®ned by

Rn �
�
@F

@ r

�
r�rs

l�ln

, �19�

Cn � 2rs

�
@F

@l

�
r�rs

l�ln

�bÿ1ÿ r2s
�� @ 2F
@r@l

�
r�rs

l�ln

: �20�

The eigenvalues ln are the roots of the transcendental
equation that arises from boundary condition (15),
namely

1F1

�
2ÿ l
4

; 1; lr2s

�
� b

2
l
ÿ
1ÿ r2s

��2ÿ l
2

1F1

�
6ÿ l
4

; 2; lr2s

�
ÿ 1F1

�
2ÿ l
4

; 1; lr2s

��
� 0: �21�

The constants an are determined from Eq. (8) by
invoking the orthogonality properties of the eigenfunc-
tions. Consequently, the local temperature ®eld is

y�r, z� � ÿ4rs

X1
n�1

exp
�
ÿ l2nz

�
F�r; ln �

Cnln
, �22�
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and the mean temperature (¯ux-averaged), which with
the present dimensionless variables reads

ym�z� � 4

r2s
ÿ
2ÿ r2s

� �rs

0

y�r, z��1ÿ r2 �r dr, �23�

is given by

ym�z� � 16

2ÿ r2s

X1
n�1

Rnexp
�
ÿ l2nz

�
Cnl

3
n

: �24�

It is easy to verify that when rs41 the solution of the
classical Graetz problem is recovered. The calculation

of the Nusselt number requires consideration of the
work done by the sliding friction since the total heat
¯ux to the wall is [16]

q � ÿk@T
@ r̂
jr̂�R ÿ mU�R�@U

@ r̂
jr̂�R: �25�

As in the case of the temperature boundary condition
(2) the second term may be neglected for low Eckert
numbers. Thus, the local Nusselt number can be writ-
ten as

Nu � ÿ2rs

ym

@y
@r
jr�rs

, �26�

which upon inserting Eqs. (22) and (24) becomes

Nu � r2s
ÿ
2ÿ r2s

�
2

X1
n�1

Rn exp
�
ÿ l2nz

�
=�Cnln �

X1
n�1

Rn exp
�
ÿ l2nz

�
=
�
Cnl

3
n

� : �27�

In addition, the fully developed Nusselt number attains

the value

Nu1 � r2s
ÿ
2ÿ r2s

�
2

l21
ÿ
rs; b

�
: �28�

Naive inspection of Eq. (28) suggests that the Nusselt
number decreases with decreasing rs, i.e., with increas-
ing rarefaction. Note, however, that this trend is not

necessarily true because the eigenvalues depend on par-
ameters rs and b, as can be seen from Eq. (21). For
clarity we have explicitly indicated this dependence in
Eq. (28). As shown below, with increasing rarefaction

the Nusselt number may increase, decrease, or even
remain unchanged, depending on the value of b: This
important feature is discussed in detail in Section 4.

The numerical evaluation of the mean temperature
(series (24)) and of the local Nusselt number (series
(27)) requires values for the eigenvalues ln and the

constants Rn, Cn: The calculation of the local tempera-
ture ®eld (series (22)) depends explicitly, in addition,
on the eigenfunctions. The eigenvalues can be calcu-

lated from Eq. (21) with any standard root-®nding
method. With the eigenvalues known, the eigenfunc-

tions are then determined from Eq. (16), and sub-
sequently the constants Rn and Cn are obtained by
evaluating numerically the integrals (17) and (18). All

the aforementioned calculations may be easily per-
formed for low orders with any high-accuracy numeri-
cal program like Mathematica [17] (see, for example,

Ref. [8]). However, for high orders (required to deter-
mine the region close to the entrance) computing time
becomes prohibitively long. An alternative way is to

use asymptotic values for the high-order eigenvalues,
eigenfunctions and constants [9,11], a subject that is
discussed in the next section.

3. Uniform asymptotic approximation

A ®rst-order asymptotic approximation to the sol-

ution of Eq. (13) was initially derived by Sellars et al.
in Ref. [9]. Their asymptotic approximation to the
high-order eigenfunctions consisted in the so-called
WKB approximation (named after Wentzel, Kramers,

and Brillouin, see, for instance, Ref. [18]), which how-
ever is valid only for intermediate r because it becomes
singular at r � 0 (regular singular point of Eq. (13))

and at r � 1 (turning point of Eq. (13)). The usual way
to handle these singularities is to provide in addition
to the WKB approximation (denoted by FB), two ap-

proximations to the exact solution valid for r near the
centreline �FA� and for r near the wall �FC), as well as
two matching functions FAB and FBC, which match

appropriately the two solutions FA and FC to the
WKB approximation FB: Accordingly, a uniform
WKB approximation over the whole interval 0RrR1
is obtained as FWKBU � FA � FB � FC ÿ FAB ÿ FBC:
This approach was used in Ref. [11] where explicit ex-
pressions for all these functions may be found.
For the classical Graetz problem the eigenvalues are

obtained by solving equation F � 0 at r � 1: Hence, it
is su�cient to require FC � 0, a condition that greatly
simpli®es the analysis. In the case of slip ¯ow bound-

ary condition, Eq. (15) must be imposed at r � rsR1:
According to Ref. [9] the approximate form FC is valid
for l2=3n �1ÿ r� � 1; thus, for a given r there exists a
value of n such that the approximation ceases to be

valid. Therefore, the complete function FWKBU should
be used in Eq. (15). Unfortunately, this procedure,
although sound, leads to very cumbersome and compli-

cated calculations since boundary condition (15)
involves the derivative of the eigenfunction.
Alternatively, we considered a di�erent approach to

obtain a uniform asymptotic approximation. Speci®-
cally, the Langer transformation was used (see, for
example, Refs. [10,18]) that, besides providing a uni-
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form asymptotic approximation over a region includ-
ing the turning point r � 1, gave more accurate results

than the uniform WKB approximation. The algebraic
manipulations required to obtain the uniform Langer
approximation at r � 1 are reproduced in Appendix

A.1 The resulting asymptotic approximation, denoted
by F1, is

F1�r� � H�r�1=2
r1=2�1ÿ r2 �1=4

�
c1J1=3�lH� � c2Jÿ1=3�lH�

�
, �29�

where

H�r� �
�1
r

ds�1ÿ s2 �1=2� 1

2

�
arccos rÿ r�1ÿ r2 �1=2

�
:

�30�

The function F1 is a valid asymptotic approximation
for r� 1=l, becoming singular at r � 0: Thus, another
approximation, valid in the region close to r � 0, is
required. We show in Appendix A.2 that a suitable

change of variables allows the use of the same scheme
to determine an asymptotic approximation valid in a
region that includes r � 0: This approximation,

denoted by F0, is

F0�r� � c0
G�r�1=2

r1=2�1ÿ r2 �1=4
J0�lG�, �31�

where

G�r� � p
4
ÿH�r�: �32�

This is a valid approximation for r� 1ÿ 1=l2=3: Since
Eq. (13) is linear, all constant multiples of a solution
are also solutions. Hence, the integration constant c0 is
merely a scaling factor which can be chosen arbitrarily.
As discussed in Section 2 c0 � 1 so that F0�0� � 1, as

scaled in the original Graetz solution [9]. The constants
c1 and c2 will be determined by the standard method
of asymptotic matching [18]: speci®cally, since the two

asymptotic approximations share a common interval
of validity, 1=l� r� 1ÿ 1=l2=3, we require that both
functions be asymptotically equal on that interval as

l41: The behaviour of F0 and F1 for large values of
their arguments can be determined from the asympto-
tic expansions of the appropriate Bessel functions (as

reproduced, for example, in Ref. [10]). One obtains

F0�r�0
�

2

lpr

�1=2
cos �lGÿ p=4�
�1ÿ r2 �1=4

, �33�

F1�r�0
�

2

lpr

�1=2
1

�1ÿ r2 �1=4
�
�
c1cos

�
lp
4
ÿ lGÿ 5p

12

�
� c2cos

�
lp
4
ÿ lGÿ p

12

��
: �34�

We determine the constants by equating the asympto-
tic expansions (33) and (34) to obtain

c1 � 2���
3
p sin

�
lp
4
ÿ p

3

�
, �35�

c2 � ÿ 2���
3
p sin

�
lp
4
ÿ 2p

3

�
: �36�

These constants are identical to those reported in Ref.
[9] since the asymptotic expressions presented in this
section apply equally well to the classical Graetz

problem.

3.1. Asymptotic calculation of eigenvalues and related
constants

The numerical values of the quantities of interest
ln, Rn, and Cn are calculated respectively from Eqs.

(15), (19) and (20) by substituting for F the asymptotic
approximation which is valid in the region close to the
wall, namely F1: The ®nal expressions are obtained

after some tedious, but straightforward algebra. They
are lengthy combinations of Bessel functions and their
derivatives, which nevertheless can be evaluated nu-

merically with ease. For reference purposes, we only
present the equation that gives the asymptotic eigen-
values

ÿ
1ÿ r2s

� �������������
H�rs �
rs

5=4

s
�
(
c1

 
bl
4rs

�
J4=3�lH� ÿ Jÿ2=3�lH�

�
�
"

1ÿ
1ÿ r2s

�3=2 ÿ bC
4rs

#
J1=3�H�

!

� c2

 
bl
4rs

�
J2=3�lH� ÿ Jÿ4=3�lH�

�
�
"

1ÿ
1ÿ r2s

�3=2 ÿ bC
4rs

#
Jÿ1=3�lH�

!)
� 0, �37�

where

C � 1

H�rs �
� 1ÿ 2r2s

rs

ÿ
1ÿ r2s

�3=2 : �38�

Note that the eigenvalues become smooth functions

of Kn, reproducing the well-known asymptotic
eigenvalues of the classical case at Kn � 0, i.e.,
l1 � 2:667, l2 � 6:667, etc. Table 1 shows the exact
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and asymptotic eigenvalues at orders nr5 for
rs � 0:95 and b � 10: The exact values were obtained

by solving Eq. (21) where Mathematica [17] was used
to evaluate numerically the con¯uent hypergeometric
function. For comparison purposes various asymptotic

approximations are shown in Table 1. In particular,
the asymptotic values were calculated by substituting
in Eq. (15) (i) the uniform Langer approximation F1,

which leads to Eq. (37) above; (ii) the uniform WKB
approximation FWKBU, as used in Ref. [11]; (iii) the
approximate form FC, valid close to the wall; and (iv)

the WKB approximation FB, valid for intermediate r.
It is apparent that the uniform approximations (i) and
(ii) give excellent results.

3.2. Weighting the Langer approximations

The two approximate eigenfunctions F0 and F1 fail
to cover the whole interval of interest because they
become singular at r � 1 and r � 0, respectively. The

usual method of asymptotic matching (used to deter-
mine the coe�cients c1 and c2� can not be used to
obtain a uniform asymptotic expression since the two
functions themselves are asymptotic. The problem,

essentially, reduces to combining these functions in a
way to cancel the respective divergent parts at the
boundaries of the interval. We propose to combine

them by choosing a suitable weight, thereby obtaining
a weighted asymptotic approximation as follows

Fw�r� � w0�r�F0�r� � w1�r�F1�r�, �39�
with

w0�r� � w1�r� � 1: �40�
The weighting functions w0 and w1 are to be chosen
such that each function is enhanced in its region of
validity and it is reduced close (or at) the point where
the function becomes singular. Hence, the singular

behaviour of either functions at the boundary

F0�r�0O
�
�1ÿ r�ÿ1=4

�
, as r41, �41�

F1�r�0O�rÿ1=2 �, as r40, �42�

provides a lower bound on the behaviour of the
weighting functions. The weights were determined nu-

merically by minimizing the di�erence of the weighted
asymptotic approximation to the exact as computed
with Mathematica [17]. The error was de®ned as the

Euclidean �L2� norm of the di�erence between the two
functions (see, for example, Ref. [11]). For simplicity
we tried weights of the form W � �1ÿ ra�b which for

r41 behaves as O��1ÿ r�b�, while 1ÿW behaves as
O�ra� when r40: The best combination we found nu-
merically was

w0�r� � �1ÿ r2 �2, �43�

w1�r� � r2�2ÿ r2 �: �44�
The numerical procedure used to specify the exponents
a and b corresponds to a numerical minimization of
the di�erence of two functions, namely a global mini-
mization. An alternative way to specify them is to

impose constraints on the derivative of Fw at the two
end points, namely a local requirement. We found the
two approaches gave slightly di�erent values, the glo-

bal minimization being preferable.
The absolute di�erence between the weighted asymp-

totic approximation and the exact solution is shown in

Fig. 1 as function of r for order n � 5 and rs � 1
(dashed curve). For comparison with our previous
work we also show the corresponding di�erence of the

uniform WKB approximation �FWKBU� as presented in
Ref. [11] (solid curve). The error of the weighted
asymptotic expansion is signi®cantly reduced with
respect to the uniform WKB approximation, and more

importantly, it is uniform over the whole interval. This
improvement justi®es the development of a new
asymptotic approximation to the eigenfunctions of Eq.

(13).

4. Results

The local Nusselt number, being the primary quan-
tity of interest in heat transfer calculations, was deter-
mined as a function of axial distance. The required

input parameters are the product bvKn (or, equiv-

Table 1

Asymptotic eigenvalues at rs � 0:95 and b � 10

Order Exact Uniform Langer �F1) FC FB Uniform WKB �FWKBU)

5 17.6707 17.6683 17.7540 18.3051 17.6722

6 21.6824 21.6803 21.7570 22.2338 21.6851

7 25.7026 25.7007 25.7703 26.1841 25.7058

8 29.7287 29.7270 29.7909 30.1519 29.7322
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alently, the slip radius rs� which is a measure of rare-
faction, and the ratio b � bT=bv which is a function of

accommodation coe�cients, i.e., a property of gas±sur-
face interactions. The parameter bvKn was considered
to vary between zero (continuum regime) and 0.1: this

range corresponds to 1rrsr0:845: On the other hand,
b was considered to vary between 0 and 10.
The necessary eigenvalues and constants in Eq. (27)

were evaluated as described in Sections 2 and 3. In
particular, the in®nite series was truncated at n � 30:
summation of the ®rst 30 terms provided adequate

convergence for all z� > 10ÿ3: The asymptotic ap-
proximation developed in Section 3 enabled the deter-
mination of the Nusselt number in a reliable manner
without experiencing the numerical instabilities

reported in Ref. [7]. In the spirit of the approach
suggested in Ref. [11], the ®rst four eigenvalues and
constants were obtained from an exact evaluation,

performed with Mathematica [17], whereas orders
5RnR30 were determined asymptotically.
Fig. 2 shows the e�ect of parameter bvKn on the

axial evolution of the local Nusselt number. We con-
sider two cases: b � 0 (Fig. 2(a)) and b � 10 (Fig. 2(b)).
Note that the case b � 0 is rather arti®cial, because it

requires either aT � 2 or aM � 0 (see Eqs. (3) and (4)).
As discussed in Section 2, such values are either
unphysical (physically meaningful values of aT must be
in the range 0 to 1) or not typical of practical engineer-

ing applications (for which aM ' 1). Nevertheless, the
case b � 0 is a useful limiting case corresponding to
the assumption of negligible temperature jump. In con-

trast, the case b � 10 corresponds to conditions of

large temperature jump at the wall. In Fig. 2(a) we
also include the results of Barron et al. [7] that, as pre-

viously discussed, were obtained by neglecting the tem-
perature jump (i.e., by imposing the arti®cial condition
b � 0). Inspection of the ®gure shows that our results

agree with these previous results. Moreover, due to the
accurate and reliable asymptotic solution presented in
this work our calculations cover a much larger part of

the entrance region.
Fig. 2(a) shows that heat transfer increases with

increasing Knudsen number in the absence of a tem-

perature jump �b � 0). Instead, Fig. 2(b) suggests that

Fig. 2. Local Nusselt number as a function of axial distance

and parametrized by bvKn with no temperature jump, b � 0

(a), and with large temperature jump b � 10 (b).

Fig. 1. Absolute deviation of the asympotic eigenfunction

from the exact at order n � 5:
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this trend is reversed when a large temperature jump is
present. These results may be interpreted by noting

that as the ¯ow departs from the continuum regime a
reduction in momentum and energy exchange occurs
because the corresponding gradients at the surface are

smaller due to the velocity slip and the temperature
jump [1]. Speci®cally, when b � 0 (cf. Fig. 2(a)) the
decrease in momentum exchange leads to increased vel-

ocity at the wall, thereby increasing convective heat
transfer. Hence, as rarefaction increases heat transfer
increases. However, when b is large heat transfer is

observed to decrease since the temperature gradient at
the wall decreases: thus, in this case, heat transfer
decreases with increasing rarefaction.
The e�ect of parameter b, for a ®xed value of

bvKn � 0:1, is illustrated in Fig. 3. The main obser-
vation is that heat transfer in the slip-¯ow regime
decreases with increasing b: As noted earlier, this e�ect

can be attributed to the reduction of energy exchange
due to smaller temperature gradients normal to the
wall, a consequence of a larger jump at the wall sur-

face. The results of Fig. 3 also show that as b
increases, the axial evolution tends to become ¯atter,
hence, the entrance zone is shortened. A consequence

of this behaviour is that parametric e�ects become
more pronounced closer to the entrance. The same
trend can be observed by inspection of Fig. 2. Thence
the interest of obtaining reliable asymptotic methods.

The fully-developed Nusselt number as a function of
bvKn and parametrized by b is presented in Fig. 4. For
completeness the results of Ref. [7] are also plotted.

This ®gure illustrates in a compact way the e�ect of

rarefaction on heat transfer: it demonstrates that heat
transfer depends not only on the degree of rarefaction

but also on b: Speci®cally, heat transfer decreases with
increasing b irrespective of Kn. As rarefaction
increases, heat transfer may increase, decrease, or,

remain unchanged depending on the value of b:
In Appendix B a perturbative calculation of the

eigenvalues shows that for very small Knudsen num-

bers the ®rst-order correction to them, and hence to
Nu1 (cf. Eq. (28)), is positive when b < 1 and negative
when b > 1: Consequently, the following simple cri-

terion may be inferred: in slip ¯ow, heat transfer
increases with respect to the continuum regime if b < 1
and decreases if b > 1: This is e�ectively observed in
the left part of Fig. 4, where the line corresponding to

b � 1 coincides with the line (dashed) for the fully
developed Nusselt number in the continuum regime
�Nu � 3:657). For larger Kn values the two lines devi-

ate. As can be seen in Fig. 4 the previous criterion on
increased (or decreased) heat transfer is quite accurate
for bvKn < 0:04 (or rs > 0:96). Beyond this range the

criterion should be viewed as approximate. Finally, the
results presented in Fig. 4 show that the conclusion of
Ref. [7] that slip ¯ow is always accompanied by a heat

transfer enhancement is not as general as the authors
claim, in particular it fails for b > 1: Note that most
engineering applications are concerned precisely with
b > 1:

Fig. 4. Fully developed Nusselt number as a function of bvKn

(equivalent rs� and b:
Fig. 3. The e�ect of parameter b on the axial evolution of the

local Nusselt number at bvKn � 0:1 �rs � 0:845�:

F. Ezquerra LarrodeÂ et al. / Int. J. Heat Mass Transfer 43 (2000) 2669±2680 2677



5. Conclusions

Slip-¯ow heat transfer in circular tubes was studied

under conditions that allowed us to exploit its simi-
larities to the classical Graetz problem. We showed
that heat transfer depends on two parameters: the pro-

duct bvKn (or, alternatively, the slip radius rs� which is
a measure of the degree of rarefaction, and b which is
a function of the surface accommodation coe�cients.

The e�ect of the temperature jump at the wall was
determined to be essential in the heat transfer analysis.
Our ®nding agrees with previous results on increased
heat transfer when the temperature jump at the wall is

neglected �b � 0), but it also shows the limitations of
such a conclusion. In particular, heat transfer was
found to increase or decrease with increasing rarefac-

tion depending on whether b < 1 or b > 1, respect-
ively. On the other hand, for a given Kn (®xed degree
of rarefaction) heat transfer decreases with increasing

b: The results were interpreted by noting that under
slip-¯ow conditions gradients at the wall are smaller
than in continuum ¯ow due to the velocity slip and the
temperature jump.

Moreover, we developed a new uniform asymptotic
approximation to the eigenfunctions of the Graetz pro-
blem, a weighted asymptotic approximation, that gave

improved results with respect to the well-known WKB
approximation. The asymptotic expressions were used
to determine the heat transfer close to the entrance, a

region where rarefaction e�ects were found to be more
pronounced.
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Appendix A. The Langer transformation applied to the

Graetz problem

The WKB approximation fails to provide a suitable
approximation in regions close to turning points; this

is the reason that the WKB approximation is asymp-
totically matched with approximate solutions near the
turning points. In 1935 Langer showed that with a

slight (but signi®cant) modi®cation of the WKB ap-
proximation it was possible to obtain a uniform
asymptotic approximation valid even in regions con-

taining a turning point [18]. The method is straightfor-
ward for single turning points, but for di�erential
equations with more than one turning point the sol-

ution of the transformed equation (via the so-called
Langer transformation) may be as di�cult as the sol-

ution of the original equation (see Refs. [10,18,19] and
references therein).
Herein, we look for uniform asymptotic approxi-

mations to the solution of Eq. (13) valid in the interval
r 2 �0, 1� for large values of the parameter l: The
WKB approximation will fail at the turning point

r � 1 and at the regular singular point r � 0: By intro-
ducing the new independent variable t � ÿlog r Eq.
(13) is transformed into

d2F�t�
dt2

�Q�t�F�t� � 0, �A1�

where

Q�t� � l2eÿ2t�1ÿ eÿ2t �: �A2�
Thus, through this change of variables both points
t � 0 (corresponding to r � 1), and t41 (correspond-

ing to r40� may be treated as turning points since
Q(t ) is zero at these points. As mentioned earlier, we
shall apply the Langer transformation separately to

each turning point.

A.1. Langer transformation for r � 1 �t � 0)

We introduce new dependent and independent vari-

ables as follows [10]

z � f�t�, v�z� � c�t�F�t�, �A3�
where

f�t� �
�

3

2
���
2
p lH�eÿt �

�2=3
, c�t� �

����������
f 0�t�

p
: �A4�

With this change of variables Eq. (A1) is transformed
into

d2v�z�
dz2

� �2z� d�v�z� � 0: �A5�

The asymptotic approximation consists of solving the

previous equation neglecting the d term: this is a legit-
imate approximation since z is of order O�l2=3�1ÿ r��
and d is of order O�lÿ4=3� for r 2 �0, 1� and l41:
Neglecting the d-term, the solution of Eq. (A5) is

v�z� � ���
z
p �

�c1J1=3

�
2
���
2
p

3
z3=2

�
� �c2Jÿ1=3

�
2
���
2
p

3
z3=2

��
:

�A6�
Going back to the original variables, rearranging terms
and absorbing the constants into rede®ned integration
constants c1 and c2 we obtain Eq. (29).
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A.2. Langer transformation for r � 0 �t41)

We use the same change of variables as that of Eqs.

(A3), but now with

f�t� � ÿlog
�
lG�eÿt �

�
, c�t� �

����������
f 0�t�

p
: �A7�

The transformed equation now reads

d2v�z�
dz2

�
ÿ
eÿ2z � d

�
v�z� � 0: �A8�

In this case eÿ2z is of order O�l2r2� and d is of order

O�r2�: The solution of the approximate equation
(neglecting the term d� is
v�z� � �c3J0�eÿz � � �c4K0�ieÿz �: �A9�
The Bessel function K has a logarithmic singularity

when its argument tends to zero �z41 or, equiva-
lently, r40). Since the function is required to be ®nite
there, we impose �c4 � 0: As before, returning to the

original variables we obtain Eq. (31).

Appendix B. Perturbative calculation of the eigenvalues

Herein, we derive expressions for the eigenvalues in

the limiting case Kn40, i.e., 1ÿ rs � 1: The results
show explicitly the in¯uence of parameters rs and b on
ln, and by that on the fully developed Nusselt number,

cf. Eq. (28).
In the limit 1ÿ rs � 1 a uniform ®rst-order expan-

sion of F(r ) in Eq. (13) may be performed via the

method of strained parameters [10]. Speci®cally, F(r )
and l are expanded in terms of the small parameter
x � 1ÿ rs as follows

F�r� � F �0��r� � xF �1��r� � � � � �B1�

l � l�0� � xl�1� � � � � �B2�
Since the boundary condition (15) is imposed at
r � 1ÿ x it is also expanded about r � 1 in a Taylor

expansion to obtain the following zeroth-order ap-
proximation to Eqs. (13) and (15)

d2F �0�

dr2
� 1

r

dF �0�

dr
�
�
l�0�

�2�1ÿ r2 �F �0� � 0, �B3�

F �0��1� � 0: �B4�
Eq. (B3) and boundary condition (B4) indicate that, as

expected, the zeroth-order eigenfunctions F �0�n and the
eigenvalues l�0�n are solutions of the case corresponding
to rs � 1 (classical Graetz problem).

The ®rst-order approximation is given by

d2F �1�

dr2
� 1

r

dF �1�

dr
�
�
l�0�

�2�1ÿ r2 �F �1�

� ÿ2l�0�l�1��1ÿ r2 �F �0�, �B5�

F �1��1� � �1ÿ b�dF
�0��1�
dr

: �B6�

The ®rst-order correction to the eigenvalue, l�1�, is
obtained by imposing a solvability condition. Speci®-
cally, we multiply Eq. (B3) by F �1��r� and Eq. (B5) by

F �0��r�, integrate both from r � 0 to r � 1, and then
we take their di�erence to obtain an equation that is
satis®ed only if l�1� is

l�1� � 1ÿ b

2l�0�N 2
0

�
dF �0��1�

dr

�2
�B7�

where

N 2
0 �

�1
0

h
F �0��r�

i2
r�1ÿ r2 � dr: �B8�

Since l�0� is positive the preceding expressions show
that the ®rst-order correction is positive for b < 1 and
negative for b > 1:
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